تخصيب اليورانيوم
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]اليورانيوم فلز مشع أبيض فضي اللون، رمزه الكيميائي U. وهو مصدر الطاقة المستخدمة في توليد الطاقة الكهربائية في كل محطات القدرة النووية التجارية الكبيرة. فبإمكان قطعة من اليورانيوم في حجم كرة المضرب إطلاق كمية من الطاقة تساوي كمية الطاقة التي تطلقها حمولة من الفحم الحجري يبلغ وزنها ثلاثة ملايين ضعف وزن قطعة اليورانيوم. وينتج اليورانيوم أيضًا الانفجاريات الهائلة لبعض الأسلحة النووية
ما هو النظير؟
هناك رقمين مميزين لكل ذرة الرقم الأول يكتب أسفل يمين رمز الذرة وهو العدد الذري (عدد البروتونات أو الإلكترونات) والثاني يكتب أعلى يمين رمز الذرة ويُسمى الوزن الذري وهو مجموع عدد البروتونات والنيوترونات في الذرة، يحدد العدد الذري نوع عنصر الذرة مثلا: الذهب لديه رمز ذري (عدد إلكترونات = 97) واليورانيوم = 92 ... وهذا الرقم إذا تغير يعني أن العنصر تغير أي أن اليورانيوم إذا أزلنا منه إلكترونا واحدا فسيصبح عنصرا آخر (مادة أخرى). أما وزن الذري فإذا تغير فإن العنصر لا يتغير حيث يبقى هو نفسه اليورانيوم لكن بعض خصائصه تتغير وعدة ذرات تحمل نفس العدد الذري ولديها وزن ذري مختلف تسمى النظائر.
يتكون اليورانيوم من ثلاثة نظائر هي:
- اليورانيوم 238 بنسبة 99.28
- اليورانيوم 235 بنسبة 0.71
- اليورانيوم 234 بالنسبة الباقية.
وعملية التخصيب بشكل مبسط هي: زيادة نسبة النظير 235 في اليورانيوم لكي تصل إلى نسبة معينة حتى يتم استخدام اليورانيوم. وكمثال فإنه إذا زدنا نسبة النظير 235 إلى ما بين 3 بالمئة و5 بالمئة فإنه يُمكننا تشغيل مفاعل نووي لإنتاج الطاقة، بينما إذا زدناها إلى ما بين 20 بالمئة و90 بالمئة فإنه يُمكننا صناعة سلاح نووي.
يتم قذف اليورانيوم بالنيوترونات داخل مفاعل نووي معتمد على استخدام الماء، الأمر الذي يولد طاقة هائلة. ولكن هناك مشكلة بسيطة تعترض حدوث هذا بالبساطة التي يبدو عليها وهو أن اليورانيوم يحتوي على النظير 238 بنسبة 99.3 وهذا النظير غير قابل للانشطار على عكس اليورانيوم 235 القابل للانشطار، وبالتالي يجب أن يتم زيادة النظير 235 إلى حد معين في اليورانيوم الطبيعي لكي يتم شطره، وتوليد الطاقة الهائلة التي تختزنها ذرات اليورانيوم، ونشير مجدد إلى أن عملية زيادة نسبة اليورانيوم 235 في اليورانيوم الطبيعي هي ما يُطلق عليه مصطلح "تخصيب اليورانيوم".
عملية التخصيب اليورانيوم
اليورانيوم238 أثقل من اليورانيوم235 بنسبة بسيطة تبلغ 0.85%، وهذا الفرق البسيط في الكتلة هو الذي يستخدم لفصل النظيرين عن بعضهما. وتتعدد طرق الفصل بينهما ولكن طريقة الفصل بالطرد المركزي هي الأكثر انتشارا وذلك لكلفته القليلة مقارنة بغيرها من الطرق، وأساسا ليس هناك سوى ثلاثة طرق لتخصيب اليورانيوم:
الطرد المركزي
تستخدم هذه الطريقة في عدد من المحطات في أوروبا واليابان، وفي هذه الطريقة يأخذ التخصيب بالطرد المركزي عدة خطوات، أولها يحّول خلالها اليورانيوم الطبيعي إلى غاز في شكل "اليورانيوم سداسي الفلور"؛ ولأن فرق الكتلة بين جزيئات غاز النظيرين بسيط، يتم تخصيب اليورانيوم في خطوات متتالية، في كل خطوة يتم زيادة نسبة اليورانيوم235 حتى الوصول للنسبة المطلوبة.
يتكون جهاز الطرد المركزي في هذه الطريقة من أسطوانات عمودية ذات حركة دوامية سريعة. ويضخ غاز سادس فلوريد اليورانيوم في كل أسطوانة عبر أنبوبة عمودية ثابتة داخل كل أسطوانة. وتجبر الحركة الدوّامية للأسطوانة كل الغاز الخارجي تقريبًا في اتجاه الجدران المنحنية. وبالإضافة إلى ذلك، تساعد مغرفة متصلة بقاعدة الأنبوبة الثابتة في انسياب الغاز عموديًا، كما تساهم الفروق في درجات الحرارة داخل الأسطوانة في إحداث هذا الانسياب العمودي.
بسبب هذه التأثيرات ـ الحركة الدوّامية للأسطوانة وحركة المغرفة وفروق درجات الحرارة ـ ينساب الغاز بنمط معقد، ويصبح الغاز القريب من قاعدة الأسطوانة مركزًا باليورانيوم 238 أكثر من الغاز العلوي. وتزيل المغرفة السفلية النفايات الغازية، التي تحتوي على تركيزات أعلى نسبيًا من اليورانيوم 238، بينما تزيل المغرفة العلوية الغاز المخصب الذي يحتوي على اليورانيوم 235 بتركيز أعلى. وتتكرر العملية حتى يتم الحصول على التركيز المطلوب من اليورانيوم 235.
الانتشار الغازي
طريقة الانتشار الغازي. تستخدم هذه الطريقة في الولايات المتحدة. وفي هذه الطريقة تضخ جزيئات سادس فلوريد اليورانيوم خلال حواجز تحتوي على ملايين الثقوب الدقيقة.
تمر جزيئات الغاز الخفيفة عبر ثقوب الحواجز أسرع من الجزيئات الثقيلة. وتحتوي الجزيئات الخفيفة على ذرات اليورانيوم 235، ولذلك يحتوي الغاز الذي يمر عبر الحاجز على نسبة من اليورانيوم 235 أعلى من الغاز الأصلي. ونظرًا لأن هذه الزيادة طفيفة جدًا فإن الغاز يجب أن يمر عبر الحاجز عدة آلاف مرة لإنتاج اليورانيوم المخصب الذي يراد استخدامه في محطات القدرة النووية.
الفصل بالليزر
هذه الطريقة مازلت في الطور التجريب والاختبار، وفيها تُستخدم توليفة من ضوء الليزر وشحنة كهربائية لفصل نظائر اليورانيوم. والليزر نبطية تنتج حزمة رفيعة من الضوء ذات مدى ترددي ضيق جدًا (تردد الضوء هو معدل اهتزاز موجات الضوء).
طريقة فصل النظائر بالليزر تسمى طريقة البخار الذري تسخِّن حزمة من الإلكترونات قطعة من اليورانيوم عند قاعدة حاوية مغلقة، محولة اليورانيوم إلى بخار (غاز)، ثم يُخترق الغاز بنبضات من حزمة ليزرية. ويوالف تردد الحزمة بحيث تستطيع الإلكترونات في ذرات اليورانيوم 235 امتصاص الضوء، ولا تستطيع إلكترونات ذرات اليورانيوم 238 ذلك.
عندما يمتص إلكترون اليورانيوم 235 هذا الضوء يحصل على طاقة تكفيه لترك الذرة. وتغير هذه العملية التوازن الكهربائي للذرة. فالإلكترون يحمل شحنة كهربائية سالبة، بينما تحمل النواة شحنة كهربائية موجبة واحدة أو أكثر. وفي الذرة العادية يكون عدد الشحنات الموجبة مساويًا لعدد الشحنات السالبة. ولذلك تكتسب الذرة شحنة موجبة عندما يتركها إلكترون. ويقول العلماء عن هذه الحالة إن الذرة تحولت إلى أيون موجب. وهكذا يؤيِّن ضوء الليزر ذرات اليورانيوم 235، ولا يؤيِّن ذرات اليورانيوم 238.
عند صعود البخار الساخن إلى أعلى تجذب ألواح تجميع سالبة الشحنة في قمة الحاوية أيونات اليورانيوم 235 الموجبة. ولأن ألواح التجميع أبرد من الغاز فإن اليورانيوم 235 يتكثف عليه (يتحول من غاز إلى سائل). ويتقطر اليورانيوم 235 من ألواح التجميع إلى حاويات خاصة، مكونًا كتلة صلبة. ثم تجمع الكتل الصلبة وتنقى وتؤكسد لاستخدامها وقودًا نوويًا. وفي نفس الأثناء ينتقل اليورانيوم 238، المتعادل كهربائيًا، عبر الألواح المشحونة، ثم يتكثف فوق لوحة نفايات قرب قمة الحاوية.
في إحدى التقنيات الليزرية تسخن وحدة كهربائية قطعة من اليورانيوم منتجة بخارًا. وتعمل حزمتان ليزريتان معًا لتأيين ذرات اليورانيوم 235 في البخار، ثم تجمع لوحة موجبة الشحنة أيونات اليورانيوم 235، تاركة بخار ذرات اليورانيوم 238 تخرج عبر فتحة في قمة الحاوية.
تستهلك طريقة فصل النظائر بالليزر طاقة كهربائية أقل بكثير من الطاقة التي تستهلكها طريقة الانتشار الغازي، كما أن تكلفة معدات طريقة الفصل بالليزر أقل بكثير من تكلفة معدات طريقة الطرد المركزي. ولذلك تجري الشركات المدعومة حكوميًا في فرنسا واليابان والولايات المتحدة التجارب لاستخدام طريقة فصل النظائر بالليزر
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]اليورانيوم فلز مشع أبيض فضي اللون، رمزه الكيميائي U. وهو مصدر الطاقة المستخدمة في توليد الطاقة الكهربائية في كل محطات القدرة النووية التجارية الكبيرة. فبإمكان قطعة من اليورانيوم في حجم كرة المضرب إطلاق كمية من الطاقة تساوي كمية الطاقة التي تطلقها حمولة من الفحم الحجري يبلغ وزنها ثلاثة ملايين ضعف وزن قطعة اليورانيوم. وينتج اليورانيوم أيضًا الانفجاريات الهائلة لبعض الأسلحة النووية
ما هو النظير؟
هناك رقمين مميزين لكل ذرة الرقم الأول يكتب أسفل يمين رمز الذرة وهو العدد الذري (عدد البروتونات أو الإلكترونات) والثاني يكتب أعلى يمين رمز الذرة ويُسمى الوزن الذري وهو مجموع عدد البروتونات والنيوترونات في الذرة، يحدد العدد الذري نوع عنصر الذرة مثلا: الذهب لديه رمز ذري (عدد إلكترونات = 97) واليورانيوم = 92 ... وهذا الرقم إذا تغير يعني أن العنصر تغير أي أن اليورانيوم إذا أزلنا منه إلكترونا واحدا فسيصبح عنصرا آخر (مادة أخرى). أما وزن الذري فإذا تغير فإن العنصر لا يتغير حيث يبقى هو نفسه اليورانيوم لكن بعض خصائصه تتغير وعدة ذرات تحمل نفس العدد الذري ولديها وزن ذري مختلف تسمى النظائر.
يتكون اليورانيوم من ثلاثة نظائر هي:
- اليورانيوم 238 بنسبة 99.28
- اليورانيوم 235 بنسبة 0.71
- اليورانيوم 234 بالنسبة الباقية.
وعملية التخصيب بشكل مبسط هي: زيادة نسبة النظير 235 في اليورانيوم لكي تصل إلى نسبة معينة حتى يتم استخدام اليورانيوم. وكمثال فإنه إذا زدنا نسبة النظير 235 إلى ما بين 3 بالمئة و5 بالمئة فإنه يُمكننا تشغيل مفاعل نووي لإنتاج الطاقة، بينما إذا زدناها إلى ما بين 20 بالمئة و90 بالمئة فإنه يُمكننا صناعة سلاح نووي.
يتم قذف اليورانيوم بالنيوترونات داخل مفاعل نووي معتمد على استخدام الماء، الأمر الذي يولد طاقة هائلة. ولكن هناك مشكلة بسيطة تعترض حدوث هذا بالبساطة التي يبدو عليها وهو أن اليورانيوم يحتوي على النظير 238 بنسبة 99.3 وهذا النظير غير قابل للانشطار على عكس اليورانيوم 235 القابل للانشطار، وبالتالي يجب أن يتم زيادة النظير 235 إلى حد معين في اليورانيوم الطبيعي لكي يتم شطره، وتوليد الطاقة الهائلة التي تختزنها ذرات اليورانيوم، ونشير مجدد إلى أن عملية زيادة نسبة اليورانيوم 235 في اليورانيوم الطبيعي هي ما يُطلق عليه مصطلح "تخصيب اليورانيوم".
عملية التخصيب اليورانيوم
اليورانيوم238 أثقل من اليورانيوم235 بنسبة بسيطة تبلغ 0.85%، وهذا الفرق البسيط في الكتلة هو الذي يستخدم لفصل النظيرين عن بعضهما. وتتعدد طرق الفصل بينهما ولكن طريقة الفصل بالطرد المركزي هي الأكثر انتشارا وذلك لكلفته القليلة مقارنة بغيرها من الطرق، وأساسا ليس هناك سوى ثلاثة طرق لتخصيب اليورانيوم:
الطرد المركزي
تستخدم هذه الطريقة في عدد من المحطات في أوروبا واليابان، وفي هذه الطريقة يأخذ التخصيب بالطرد المركزي عدة خطوات، أولها يحّول خلالها اليورانيوم الطبيعي إلى غاز في شكل "اليورانيوم سداسي الفلور"؛ ولأن فرق الكتلة بين جزيئات غاز النظيرين بسيط، يتم تخصيب اليورانيوم في خطوات متتالية، في كل خطوة يتم زيادة نسبة اليورانيوم235 حتى الوصول للنسبة المطلوبة.
يتكون جهاز الطرد المركزي في هذه الطريقة من أسطوانات عمودية ذات حركة دوامية سريعة. ويضخ غاز سادس فلوريد اليورانيوم في كل أسطوانة عبر أنبوبة عمودية ثابتة داخل كل أسطوانة. وتجبر الحركة الدوّامية للأسطوانة كل الغاز الخارجي تقريبًا في اتجاه الجدران المنحنية. وبالإضافة إلى ذلك، تساعد مغرفة متصلة بقاعدة الأنبوبة الثابتة في انسياب الغاز عموديًا، كما تساهم الفروق في درجات الحرارة داخل الأسطوانة في إحداث هذا الانسياب العمودي.
بسبب هذه التأثيرات ـ الحركة الدوّامية للأسطوانة وحركة المغرفة وفروق درجات الحرارة ـ ينساب الغاز بنمط معقد، ويصبح الغاز القريب من قاعدة الأسطوانة مركزًا باليورانيوم 238 أكثر من الغاز العلوي. وتزيل المغرفة السفلية النفايات الغازية، التي تحتوي على تركيزات أعلى نسبيًا من اليورانيوم 238، بينما تزيل المغرفة العلوية الغاز المخصب الذي يحتوي على اليورانيوم 235 بتركيز أعلى. وتتكرر العملية حتى يتم الحصول على التركيز المطلوب من اليورانيوم 235.
الانتشار الغازي
طريقة الانتشار الغازي. تستخدم هذه الطريقة في الولايات المتحدة. وفي هذه الطريقة تضخ جزيئات سادس فلوريد اليورانيوم خلال حواجز تحتوي على ملايين الثقوب الدقيقة.
تمر جزيئات الغاز الخفيفة عبر ثقوب الحواجز أسرع من الجزيئات الثقيلة. وتحتوي الجزيئات الخفيفة على ذرات اليورانيوم 235، ولذلك يحتوي الغاز الذي يمر عبر الحاجز على نسبة من اليورانيوم 235 أعلى من الغاز الأصلي. ونظرًا لأن هذه الزيادة طفيفة جدًا فإن الغاز يجب أن يمر عبر الحاجز عدة آلاف مرة لإنتاج اليورانيوم المخصب الذي يراد استخدامه في محطات القدرة النووية.
الفصل بالليزر
هذه الطريقة مازلت في الطور التجريب والاختبار، وفيها تُستخدم توليفة من ضوء الليزر وشحنة كهربائية لفصل نظائر اليورانيوم. والليزر نبطية تنتج حزمة رفيعة من الضوء ذات مدى ترددي ضيق جدًا (تردد الضوء هو معدل اهتزاز موجات الضوء).
طريقة فصل النظائر بالليزر تسمى طريقة البخار الذري تسخِّن حزمة من الإلكترونات قطعة من اليورانيوم عند قاعدة حاوية مغلقة، محولة اليورانيوم إلى بخار (غاز)، ثم يُخترق الغاز بنبضات من حزمة ليزرية. ويوالف تردد الحزمة بحيث تستطيع الإلكترونات في ذرات اليورانيوم 235 امتصاص الضوء، ولا تستطيع إلكترونات ذرات اليورانيوم 238 ذلك.
عندما يمتص إلكترون اليورانيوم 235 هذا الضوء يحصل على طاقة تكفيه لترك الذرة. وتغير هذه العملية التوازن الكهربائي للذرة. فالإلكترون يحمل شحنة كهربائية سالبة، بينما تحمل النواة شحنة كهربائية موجبة واحدة أو أكثر. وفي الذرة العادية يكون عدد الشحنات الموجبة مساويًا لعدد الشحنات السالبة. ولذلك تكتسب الذرة شحنة موجبة عندما يتركها إلكترون. ويقول العلماء عن هذه الحالة إن الذرة تحولت إلى أيون موجب. وهكذا يؤيِّن ضوء الليزر ذرات اليورانيوم 235، ولا يؤيِّن ذرات اليورانيوم 238.
عند صعود البخار الساخن إلى أعلى تجذب ألواح تجميع سالبة الشحنة في قمة الحاوية أيونات اليورانيوم 235 الموجبة. ولأن ألواح التجميع أبرد من الغاز فإن اليورانيوم 235 يتكثف عليه (يتحول من غاز إلى سائل). ويتقطر اليورانيوم 235 من ألواح التجميع إلى حاويات خاصة، مكونًا كتلة صلبة. ثم تجمع الكتل الصلبة وتنقى وتؤكسد لاستخدامها وقودًا نوويًا. وفي نفس الأثناء ينتقل اليورانيوم 238، المتعادل كهربائيًا، عبر الألواح المشحونة، ثم يتكثف فوق لوحة نفايات قرب قمة الحاوية.
في إحدى التقنيات الليزرية تسخن وحدة كهربائية قطعة من اليورانيوم منتجة بخارًا. وتعمل حزمتان ليزريتان معًا لتأيين ذرات اليورانيوم 235 في البخار، ثم تجمع لوحة موجبة الشحنة أيونات اليورانيوم 235، تاركة بخار ذرات اليورانيوم 238 تخرج عبر فتحة في قمة الحاوية.
تستهلك طريقة فصل النظائر بالليزر طاقة كهربائية أقل بكثير من الطاقة التي تستهلكها طريقة الانتشار الغازي، كما أن تكلفة معدات طريقة الفصل بالليزر أقل بكثير من تكلفة معدات طريقة الطرد المركزي. ولذلك تجري الشركات المدعومة حكوميًا في فرنسا واليابان والولايات المتحدة التجارب لاستخدام طريقة فصل النظائر بالليزر